POINTWISE ANALYSIS OF

 RIEMANN'S OTHER FUNCTION Frederik Broucke - fabrouck.broucke@ugent.be based on joint work with J. VindasGHENT
UNIVERSITY

INTRODUCTION

Let

$$
f(x)=\sum_{n=1}^{\infty} \frac{\sin \left(n^{2} \pi x\right)}{n^{2}}
$$

- At which points (if any) is f differentiable?
- Measure pointwise regularity?

History

■ 1916, Hardy: not differentiable on certain subset containing irrationals.

History

- 1916, Hardy: not differentiable on certain subset containing irrationals.
- 1970, Gerver: differentiable at $(2 r+1) /(2 s+1)$.

History

- 1916, Hardy: not differentiable on certain subset containing irrationals.
- 1970, Gerver: differentiable at $(2 r+1) /(2 s+1)$.

■ 70's, 80's, Smith, Itatsu, ...: simpler proofs, expansion at rationals, Hölder exponent at rationals:

$$
\alpha(x)=\sup \left\{\alpha>0: f(x+h)=f(x)+O_{x}\left(|h|^{\alpha}\right)\right\} .
$$

History

- 1916, Hardy: not differentiable on certain subset containing irrationals.
- 1970, Gerver: differentiable at $(2 r+1) /(2 s+1)$.

■ 70's, 80's, Smith, Itatsu, ...: simpler proofs, expansion at rationals, Hölder exponent at rationals:

$$
\alpha(x)=\sup \left\{\alpha>0: f(x+h)=f(x)+O_{x}\left(|h|^{\alpha}\right)\right\} .
$$

- 1991, Duistermaat: upper bound $\alpha(x)$ at irrationals.

History

- 1916, Hardy: not differentiable on certain subset containing irrationals.
- 1970, Gerver: differentiable at $(2 r+1) /(2 s+1)$.

■ 70's, 80's, Smith, Itatsu, ...: simpler proofs, expansion at rationals, Hölder exponent at rationals:

$$
\alpha(x)=\sup \left\{\alpha>0: f(x+h)=f(x)+O_{x}\left(|h|^{\alpha}\right)\right\} .
$$

- 1991, Duistermaat: upper bound $\alpha(x)$ at irrationals.
- 1996, Jaffard: lower bound $\alpha(x)$ at irrationals.

Relation with theta function

Write $e(z)=\mathrm{e}^{2 \pi \mathrm{i} z}$, and let

$$
\phi(z)=\sum_{n=1}^{\infty} \frac{e\left(n^{2} z\right)}{2 \pi i n^{2}}, \quad \theta(z)=\sum_{n \in \mathbb{Z}} e\left(n^{2} z\right)
$$

Relation with theta function

Write $e(z)=\mathrm{e}^{2 \pi \mathrm{i} z}$, and let

$$
\phi(z)=\sum_{n=1}^{\infty} \frac{e\left(n^{2} z\right)}{2 \pi \mathrm{in}^{2}}, \quad \theta(z)=\sum_{n \in \mathbb{Z}} e\left(n^{2} z\right)
$$

$\phi^{\prime}(z)=\frac{1}{2}(\theta(z)-1)$, so

$$
\phi(x+h)-\phi(x)+\frac{h}{2}=\frac{1}{2} \lim _{y \rightarrow 0^{+}} \int_{\mathrm{i} y}^{h+\mathrm{i} y} \theta(x+z) \mathrm{d} z .
$$

Behavior θ NEAR RATIONALS

Let $1 \leq p \leq q,(p, q)=1$.

$$
\begin{aligned}
\theta\left(\frac{p}{q}+z\right) & =\sum_{n \in \mathbb{Z}} e\left(\frac{p n^{2}}{q}\right) e\left(n^{2} z\right)=\sum_{j=1}^{q} e\left(\frac{p j^{2}}{q}\right) \sum_{n \in j+q \mathbb{Z}} e\left(n^{2} z\right) \\
& =\frac{\mathrm{e}^{\mathrm{i} \pi / 4}}{q \sqrt{2}} z^{-1 / 2} \sum_{m \in \mathbb{Z}} S(q, p, m) \exp \left(-\frac{\mathrm{i} \pi m^{2}}{2 q^{2} z}\right)
\end{aligned}
$$

with

$$
S(q, p, m)=\sum_{j=1}^{q} e\left(\frac{p j^{2}+m j}{q}\right) .
$$

EXPANSION ϕ AT RATIONALS

Using relation ϕ and θ, integrating by parts, and letting $y \rightarrow 0^{+}$, we obtain:

Theorem

For p and q integers, $q \geq 1,(p, q)=1$

$$
\phi\left(\frac{p}{q}+h\right)=\phi\left(\frac{p}{q}\right)+\frac{\mathrm{e}^{\mathrm{i} \pi / 4}}{q \sqrt{2}} S(q, p) h^{1 / 2}-\frac{h}{2}+R_{q, p}(h)
$$

where $R_{q, p}(h) \ll q^{3 / 2}|h|^{3 / 2}$.

EXPANSION ϕ AT RATIONALS

Using relation ϕ and θ, integrating by parts, and letting $y \rightarrow 0^{+}$, we obtain:

Theorem

For p and q integers, $q \geq 1,(p, q)=1$

$$
\phi\left(\frac{p}{q}+h\right)=\phi\left(\frac{p}{q}\right)+\frac{\mathrm{e}^{\mathrm{i} \pi / 4}}{q \sqrt{2}} S(q, p) h^{1 / 2}-\frac{h}{2}+R_{q, p}(h)
$$

where $R_{q, p}(h) \ll q^{3 / 2}|h|^{3 / 2}$.
From the evaluation of $S(q, p)$ we get:

Corollary

ϕ is differentiable at p / q if and only if $q \equiv 2 \bmod 4$.

HÖLDER EXPONENT AT IRRATIONALS

Let ρ be irrational. Hölder exponent depends on Diophantine properties of ρ. Let $r_{n}=p_{n} / q_{n}$ be the n-th convergent in continued fraction expansion of ρ. Define τ_{n} via

$$
\left|\rho-r_{n}\right|=\left(\frac{1}{q_{n}}\right)^{\tau_{n}}
$$

Let $\left(r_{n_{k}}\right)_{k}$ be subsequence with $q_{n_{k}} \not \equiv 2 \bmod 4$. Set

$$
\tau(\rho)=\limsup _{k \rightarrow \infty} \tau_{n_{k}}
$$

HÖLDER EXPONENT AT IRRATIONALS

Let ρ be irrational. Hölder exponent depends on Diophantine properties of ρ. Let $r_{n}=p_{n} / q_{n}$ be the n-th convergent in continued fraction expansion of ρ. Define τ_{n} via

$$
\left|\rho-r_{n}\right|=\left(\frac{1}{q_{n}}\right)^{\tau_{n}}
$$

Let $\left(r_{n_{k}}\right)_{k}$ be subsequence with $q_{n_{k}} \not \equiv 2 \bmod 4$. Set

$$
\tau(\rho)=\limsup _{k \rightarrow \infty} \tau_{n_{k}}
$$

Theorem

For irrational ρ, Hölder exponent is given by

$$
\alpha(\rho)=\frac{1}{2}+\frac{1}{2 \tau(\rho)}
$$

UPPER BOUND

The upper bound

$$
\alpha(\rho) \leq \frac{1}{2}+\frac{1}{2 \tau(\rho)}
$$

is due to Duistermaat.
Idea: consider subsequences of $r_{n_{k}} \rightarrow \rho$ and exploit square root behavior of ϕ at $r_{n_{k}}$.

LOWER BOUND

The lower bound

$$
\alpha(\rho) \geq \frac{1}{2}+\frac{1}{2 \tau(\rho)}
$$

was first shown by Jaffard via continuous wavelet transform. We present a quick proof using Cauchy's formula.

LOWER BOUND

The lower bound

$$
\alpha(\rho) \geq \frac{1}{2}+\frac{1}{2 \tau(\rho)}
$$

was first shown by Jaffard via continuous wavelet transform. We present a quick proof using Cauchy's formula.
Using expansion of θ at r_{n} and properties of continued fractions, obtain

$$
\theta(\rho+z) \ll_{\varepsilon}|z|^{\frac{1}{2 \tau(\rho)}-\varepsilon-\frac{1}{2}}+y^{-1 / 2}|z|^{\frac{1}{2 \tau(\rho)}-\varepsilon} .
$$

LOWER BOUND

The lower bound

$$
\alpha(\rho) \geq \frac{1}{2}+\frac{1}{2 \tau(\rho)}
$$

was first shown by Jaffard via continuous wavelet transform. We present a quick proof using Cauchy's formula.
Using expansion of θ at r_{n} and properties of continued fractions, obtain

$$
\theta(\rho+z) \ll_{\varepsilon}|z|^{\frac{1}{2 \tau(\rho)}-\varepsilon-\frac{1}{2}}+y^{-1 / 2}|z|^{\frac{1}{2 \tau(\rho)}-\varepsilon} .
$$

By Cauchy's formula, we have

$$
\phi(\rho+h)-\phi(\rho)=-\frac{1}{2} h+\frac{1}{2} \int_{\Gamma} \theta(\rho+z) \mathrm{d} z
$$

Γ is boundary of rectangle with vertices $h, h+\mathrm{i}|h|, \mathrm{i}|h|$, and 0 . Estimate the integral with the above bounds.

QUESTIONS?

